Compass-and-straightedge construction 尺规作图
(重定向自Geometric Construction)
Compass-and-straightedge construction, also known as ruler-and-compass construction or classical construction, is the construction of lengths, angles, and other geometric figures using only an idealized ruler and compass.
The idealized ruler, known as a straightedge, is assumed to be infinite in length, and has no markings on it and only one edge. The compass is assumed to collapse when lifted from the page, so may not be directly used to transfer distances. (This is an unimportant restriction since, using a multi-step procedure, a distance can be transferred even with collapsing compass; see compass equivalence theorem.) More formally, the only permissible constructions are those granted by Euclid's first three postulates. Every point constructible using straightedge and compass may be constructed using compass alone.