网站首页  英汉词典

请输入您要查询的英文单词:

 

单词 KdV equation
释义

KdV equation

中文百科

KdV方程 Korteweg–de Vries equation

(重定向自KdV equation)
KdV方程行波图

KdV方程是1895年由荷兰数学家科特韦格德弗里斯共同发现的一种偏微分方程(也有人称之为科特韦格-德弗里斯方程,但一般都习惯直接叫KdV方程)。关于实自变量xt 的函数φ所满足的KdV方程形式如下:

\partial_t\phi+6\phi\partial_x\phi+\partial^3_x\phi=0

KdV方程的解为簇集的孤立子(又称孤子孤波)。

英语百科

Korteweg–de Vries equation KdV方程

(重定向自KdV equation)
Numerical solution of the KdV equation ut + uux + δ2uxxx = 0 (δ = 0.022) with an initial condition u(x, 0) = cos(πx). Its calculation was done by the Zabusky–Kruskal scheme.[1] The initial cosine wave evolves into a train of solitary-type waves.

In mathematics, the Korteweg–de Vries equation (KdV equation for short) is a mathematical model of waves on shallow water surfaces. It is particularly notable as the prototypical example of an exactly solvable model, that is, a non-linear partial differential equation whose solutions can be exactly and precisely specified. KdV can be solved by means of the inverse scattering transform. The mathematical theory behind the KdV equation is a topic of active research. The KdV equation was first introduced by Boussinesq (1877,footnote on page 360) and rediscovered by DiederikKortewegandGustav de Vries (1895).

随便看

 

英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2024 encnc.com All Rights Reserved
更新时间:2025/6/22 17:07:59