Lipschitz continuity 利普希茨连续
(重定向自Lipschitz constant)
In mathematical analysis, Lipschitz continuity, named after Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a definite real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; this bound is called a "Lipschitz constant" of the function (or "modulus of uniform continuity"). For instance, every function that has bounded first derivatives is Lipschitz.