Outer measure 外测度
In mathematics, in particular in measure theory, an outer measure or exterior measure is a function defined on all subsets of a given set with values in the extended real numbers satisfying some additional technical conditions. A general theory of outer measures was first introduced by Constantin Carathéodory to provide a basis for the theory of measurable sets and countably additive measures. Carathéodory's work on outer measures found many applications in measure-theoretic set theory (outer measures are for example used in the proof of the fundamental Carathéodory's extension theorem), and was used in an essential way by Hausdorff to define a dimension-like metric invariant now called Hausdorff dimension.