And then all of the basis vectors, other than the one, correspond to the direction you're looking for.
然后所有的基向量 除了这个 都对应于你要找的方向。
单词 | Basis vectors |
释义 |
Basis vectors
原声例句
Linear algebra And then all of the basis vectors, other than the one, correspond to the direction you're looking for. 然后所有的基向量 除了这个 都对应于你要找的方向。 Linear algebra For this specific example, the basis vector I hat is one such special vector. 对于这个特殊的例子 基向量I帽就是这样一个特殊的向量。 Linear algebra A set of basis vectors, which are also agen vectors, is called, again, reasonably enough, an eigen basis. 一组基向量 也就是原向量 再一次 很合理地称为特征基。 Linear algebra Those columns represent were our basis, vectors. 这些列表示我们的基底 向量。 Linear algebra Take a look at what happens if our basis vectors just so happened to be eigenvectors, e.g. 看一下如果基向量恰好是特征向量会发生什么。 Linear algebra What I'd like to talk about here is the idea of using a different set of basis vectors. 我在这里要讲的是使用一组不同的基向量。 Linear algebra And the two special vectors I had and j hat are called the basis vectors of our standard coordinate system. 这两个特殊的向量和j帽叫做标准坐标系的基向量。 Linear algebra The excordinate of this mystery input vector is what you get by taking its dot product with the 1st basis vector one zero. 这个神秘的输入向量的纵坐标就是它和第一个基向量(0)的点积。 Linear algebra A matrix whose columns represent jennifer's basis factors can be thought of as a transformation that moves our basis vectors. 一个列代表jennifer基因子的矩阵可以被认为是移动基向量的变换。 Linear algebra We could have chosen different basis vectors and gotten a completely reasonable new coordinate system. 我们可以选择不同的基向量得到一个完全合理的新坐标系。 Linear algebra And the way to interpret this is that all the basis vectors are eigenvectors, with the diagonal entries of this matrix being their eigen values. 解释这个的方法是所有的基向量都是特征向量 这个矩阵的对角线元素是它们的特征值。 Linear algebra But now there are three standard basis vectors that we typically use. 但是现在有三个标准基向量我们通常使用。 Linear algebra Delightfully, these transformations can be described using only a handful of numbers, the coordinates of where each basis vector lands. 令人高兴的是 这些转换可以只用几个数字来描述 即每个基向量的落点坐标。 Linear algebra This is because it represents working in a coordinate system, where what happens to the basis vectors is that they get scaled during the transformation. 这是因为它表示在一个坐标系中工作 基向量在变换过程中会缩放。 Linear algebra It means the basis vectors continue to span the full two dimensions of space, and the determinant is not zero. 它意味着基向量继续张成整个二维空间 行列式不为零。 Linear algebra And just as with two dimensions, one of these transformations is completely described by where the basis vectors go. 就像在二维空间中一样 其中一个变换完全由基向量的位置来描述。 Linear algebra Now, take another look at that vector that I showed earlier, the one that you and I would describe using the coordinates three, two, using our basis vectors I had. 现在 再看一下我之前展示过的向量 你和我将用坐标来描述的向量 用我们已知的基向量。 Linear algebra So maybe you hope that after the transformation, the dot products with the transformed version of the mystery vector, with the transformed version of the basis vectors, will also be these coordinates X and y. 所以也许你希望在变换之后 与神秘向量的变换后的点积 与基向量的变换后的点积 也会是这些坐标X和y。 Linear algebra In three dimensions, it helps to focus your attention on the specific one by one by one cube whose edges are resting on the basis vectors. 在三维空间中 它有助于你把注意力集中在一个接一个的特定立方体上 这些立方体的边都位于基向量上。 Linear algebra One of the most important consequences of these properties, which makes matrix factor multiplication possible, is that a linear transformation is completely described by where it takes the basis vectors. 这些性质的最重要的结果之一 使得矩阵因子乘法成为可能 就是线性变换完全由它取基向量的位置来描述。
中文百科
基 (线性代数) Basis (linear algebra)(重定向自Basis vectors)
![]() ![]() ![]() ![]() 在线性代数中,基(也称为基底)是描述、刻画矢量空间的基本工具。矢量空间的基是它的一个特殊的子集,基的元素称为基矢量。矢量空间中任意一个元素,都可以唯一地表示成基矢量的线性组合。如果基中元素个数有限,就称矢量空间为有限维矢量空间,将元素的个数称作矢量空间的维数。 使用基底可以便利地描述矢量空间。比如说,考察从一个矢量空间 不是所有空间都拥有由有限个元素构成的基底。这样的空间称为无限维空间。某些无限维空间上可以定义由无限个元素构成的基。如果承认选择公理,那幺可以证明任何矢量空间都拥有一组基。一个矢量空间的基不止一组,但同一个空间的两组不同的基,它们的元素个数或势(当元素个数是无限的时候)是相等的。一组基里面的任意一部分矢量都是线性无关的;反之,如果矢量空间拥有一组基,那幺在矢量空间中取一组线性无关的矢量,一定能将它扩充为一组基。在内积矢量空间中,可以定义正交的概念。通过特别的方法,可以将任意的一组基变换成正交基乃至标准正交基。
英语百科
Basis (linear algebra) 基 (线性代数)(重定向自Basis vectors)
![]() ![]() ![]() ![]() A set of vectors in a vector space V is called a basis, or a set of basis vectors, if the vectors are linearly independent and every vector in the vector space is a linear combination of this set. In more general terms, a basis is a linearly independent spanning set. |
随便看 |
|
英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。