网站首页  英汉词典

请输入您要查询的英文单词:

 

单词 Wallis product
释义

Wallis product

中文百科

沃利斯乘积

数学家约翰·沃利斯在1655年写下了今日有名的沃利斯乘积

 
\prod_{n=1}^{\infty} \frac{2n}{2n-1} \cdot \frac{2n}{2n+1} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2}.

今日多数的微积分教科书透过比较 \int_0^\pi \sin^nxdxn是奇数或是偶数,甚至是接近无穷大的情况下,发现即使将n增加一就会发生不一样的情形。在那时,微积分尚未存在,而且有关数学收敛的分析工具也还未俱全,所以完成这证明较现今有相当的难度。从现在来看,从欧拉公式中的正弦展开式得到此乘积是必然的结果。

\frac{\sin(x)}{x} = \left(1 - \frac{x^2}{\pi^2}\right)\left(1 - \frac{x^2}{4\pi^2}\right)\left(1 - \frac{x^2}{9\pi^2}\right) \cdots = \prod_{n = 1}^\infty\left(1 - \frac{x^2}{n^2\pi^2}\right),

x = π/2时


\frac{2}{\pi} = \prod_{n=1}^{\infty} \left(1 - \frac{1}{4n^2}\right)= \left(1 - \frac{1}{2^2}\right)\left(1 - \frac{1}{2^2 \cdot 4}\right)\left(1 - \frac{1}{2^2 \cdot 9}\right) \cdots
\begin{align}
\frac{\pi}{2} &{}= \prod_{n=1}^{\infty} \left(\frac{4n^2}{4n^2 - 1}\right) \\
&{}= \prod_{n=1}^{\infty} \frac{(2n)(2n)}{(2n-1)(2n+1)} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots
\end{align}
英语百科

Wallis product 沃利斯乘积

Comparison of the convergence of the Wallis product (purple asterisks) and several historical infinite series for π. Sn is the approximation after taking n terms. Each subsequent subplot magnifies the shaded area horizontally by 10 times. (click for detail)

In mathematics, Wallis' product for π, written down in 1655 by John Wallis, states that

 
\prod_{n=1}^{\infty} \left(\frac{2n}{2n-1} \cdot \frac{2n}{2n+1}\right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2}
随便看

 

英汉网英语在线翻译词典收录了3779314条英语词汇在线翻译词条,基本涵盖了全部常用英语词汇的中英文双语翻译及用法,是英语学习的有利工具。

 

Copyright © 2004-2024 encnc.com All Rights Reserved
更新时间:2025/6/18 13:00:11